
DÉVELOPPEMENT
D’APPLICATIONS MOBILES

Alex Morel - Code Lutin

@alex_morel_

Programme du cours :

1.Bases Android
2. HTTP, Asynchronicité, Évènements, Google Maps
3. Base de données, Notifications
4. Bonnes pratiques, débugage, architecture

Je peux inclure les sujets de votre choix (prévenez-moi tôt)

D é v e l o p p e m e n t d ’ a p p l i c a t i o n s m o b i l e s
C o u r s 1

Structure d’un projet Android

• Le Manifest : contrat de votre App

• Les activités : les contrôleurs de votre App

• Les layouts : vues décrites en XML

• Les resources : drawables & assets

Structure d’un projet Android

Cycle de vie d’une Activité

• onCreate() c’est pas comme onResume()

Build Android (gradle) : lister les dépendances dans le build.gradle

ButterKnife : sucre syntaxique : @BindView, @OnClick

Git - niveau 1 : travail local (git init, add, commit, status, reset)

Structure d’un projet Android

Listes et adapteurs

4 - Listes et adapteurs

Etape 1 : créer le modèle

Android Studio shortcuts
• Alt + Insérer (Generate)

Etape 2 : créer le layout de notre Item

4 - Listes et adapteurs

Etape 3.1 : créer le ViewHolder dans l’adapteur

4 - Listes et adapteurs

Etape 3.2 : créer l’adapter

4 - Listes et adapteurs

Etape 4 : brancher RecyclerView et Adapter dans l’activité

4 - Listes et adapteurs

5 - Gestion des ressources (assets, drawables)

5 - Gestion des ressources (assets, drawables)

Support multi-résolution possible
• Meilleures performances
• Optimisation mémoire

Drawables : tout ce qui peut se dessiner (images ou formes géométriques)

5 - Gestion des ressources (assets, drawables)

Super Utile !!!!!

https://www.javahelps.com/2015/02/android-drawable-importer.html

https://www.javahelps.com/2015/02/android-drawable-importer.html

5 - Gestion des ressources (assets, drawables)

Drawables : tout ce qui peut se dessiner (images ou formes géométriques)

5 - Gestion des ressources (assets, drawables)

Assets & raw : le reste (sons, vidéos, PDF…)

5 - Gestion des ressources (assets, drawables)

Exercice n°8

• Ajouter un drawable pour les maisons et un drawable pour les rues

• Modifier le layout des items pour afficher une image à gauche de l’adresse

• Modifier le code pour afficher une image différente si l’adresse contient « 1 »

• Jouer un son quand on clique sur une image de la liste

Pari n°4 : quelqu’un va s’amuser avec les sons

Nos objectifs du jour :

1. Les Intents : vers d’autres activités et au-delà
2. Git - niveau 2
3. Requêtes HTTP : les bases
4. Asynchronicité & parallélisme
5. Évènements
6. Retrofit (si vous êtes encore vivants)

1 - Les Intents : vers d’autres activités et au-delà

1 - Les Intents : vers d’autres activités et au-delà

1 - Les Intents : vers d’autres activités et au-delà

Exercice n°9

• Créer une nouvelle activité PlaceDetailsActivity

• Lorsqu’on clique sur une icône de la liste, lancer cette activité

• Appuyer sur le bouton « retour » du téléphone, que se passe-t-il ?

• Au clic sur la TextView de la PlaceDetailsActivity :
• Revenir à l’écran précédent (MainActivity)
• 2 façons de procéder (avec ou sans Intent), quelle différence ?

1 - Les Intents : vers d’autres activités et au-delà

irealite.com/miage

Android Studio shortcuts : alt + Entrée, tout le temps, partout !

1 - Les Intents : vers d’autres activités et au-delà

Ajouter des paramètre à l’Intent

Récupérer les paramètres dans l’activité lancée

1 - Les Intents : vers d’autres activités et au-delà

Exercice n°10

• Faire en sorte que la PlaceDetailsActivity affiche la « street » du lieu sur lequel on a cliqué

1 - Les Intents : vers d’autres activités et au-delà

Lancer une application externe avec Intent.ACTION_*

1 - Les Intents : vers d’autres activités et au-delà

Exercice n°10

• Créer des boutons permettant de :
• chercher la street sur google (navigateur)

https://www.google.com/search?q=Ma%20Super%20Recherche
• partager la street (via SMS, Mail, Facebook…)

1 - Les Intents : vers d’autres activités et au-delà

https://www.google.com/search?q=Ma%20Super%20Recherche

On a souvent besoin de récupérer le résultat d’un Intent

1 - Les Intents : vers d’autres activités et au-delà

Exercice n°11 (à faire chez vous si vous le souhaitez)

• Créer un bouton permettant de :
• sélectionner une image dans votre galerie
• afficher l’image choisie dans la vue

1 - Les Intents : vers d’autres activités et au-delà

2 - Git - niveau 2

2 - Git - niveau 2

NE TRAVAILLEZ JAMAIS SANS REPO GIT

COMMITEZ PETIT POUR LES CONFLITS

COMMITEZTOUT LE TEMPS

2 - Git - niveau 2

2 - Git - niveau 2

2 - Git - niveau 2

Un repo git peut connaître d’autre repo git (« Remotes »)

Mon Repo Git Local

2 - Git - niveau 2

Un repo git peut connaître d’autre repo git (« Remotes »)

Mon Repo Git Local Un autre Repo Git (Bitbucket)

2 - Git - niveau 2

Mon Repo Git Local Un autre Repo Git (Bitbucket)

git remote add <NOM DU REMOTE> <URL DU REMOTE>

git remote add team https://alexmorel@bitbucket.org/alexmorel/org.miage.placesearcher

team

https://alexmorel@bitbucket.org/alexmorel/org.miage.placesearcher

2 - Git - niveau 2

Mon Repo Git Local Un autre Repo Git (Bitbucket)

git push <NOM DU REMOTE> <NOM DE LA BRANCHE>

git push team master

push

2 - Git - niveau 2

git push <NOM DU REMOTE> <NOM DE LA BRANCHE>

git push team master

2 - Git - niveau 2

Mon Repo Git Local Un autre Repo Git (team)

push

git push team master

• Cherche l’ancêtre commun (ici bleu)
• Les changements locaux doivent être au-dessus de team
• Pousse les commits locaux manquants sur team

master

master

master

Mon Repo Git Local Un autre Repo Git (team)

git push team master

• Cherche l’ancêtre commun (ici bleu)
• Les changements locaux doivent être au-dessus de team

master master

push -f

2 - Git - niveau 2

push

2 - Git - niveau 2

Mon Repo Git Local Un autre Repo Git (team)

fetch

master master

git fetch team

• Mets à jour le pointeur local team/master
• Ne change pas votre historique local (master)

team/master

2 - Git - niveau 2

Mon Repo Git Local

master team/master

git rebase team/master master

• Applique tous les comits de master en partant de team/master
• Peut générer des conflits

master

2 - Git - niveau 2

Mon Repo Git Local Un autre Repo Git (team)

master

git push team master

• Cherche l’ancêtre commun (ici jaune)
• Les changements locaux doivent être au-dessus de team

push

master

master

team/master

team/master

2 - Git - niveau 2

git clone URL

Un autre Repo Git (origin)

master

Mon Repo Git Local

mkdir

git init git fetch origin

origin/master

git rebase origin/master master

master

master

git remote add origin URL

Exercice GIT
• Créer un repository vide sur Bitbucket ou Github

• Pusher vos changements actuels

• À partir de maintenant, pensez à pusher sur origin après chaque exercice

2 - Git - niveau 2

LES 3 CHOSES À GARDER EN TÊTE

1. Je fais mes modifs sur mon repo local

2. Fetch va chercher les changements, rebase les intègre

3. Je pushe régulièrement au cas où mon ordi prend feu

git add remote, fetch, rebase, push, clone

3 - Requêtes HTTP : les bases

Vos Apps vont avoir besoin d’utiliser des services distants (WebServices)

• Flux RSS : fichiers XML

• SOAP : compliqué mais fonctionnel

• Le plus répandu : Serveurs REST

3 - Requêtes HTTP : les bases

3 - Requêtes HTTP : les bases

Serveurs REST : le REUH et le STEUH

• REUH = Resources (tout est basé sur des ressources HTTP accédées via des requêtes)

• STEUH = Stateless (les appels ne dépendent pas des appels précédents)

3 - Requêtes HTTP : les bases

Serveurs REST : concrètement c’est quoi

• Un serveur (php, Node.js, python)

• Qui fournit des APIs HTTP
• GET sur http://monserver.com/fiches retourne toutes les fiches
• GET sur http://monserver.com/fiches/2 retourne la fiche d’id 2
• POST sur http://monserver.com/fiches/2 permet d’éditer la fiche 2
• DELETE sur http://monserver.com/fiches/2 permettre de supprimer la fiche 2

• Boite noire : OSEF de la logique serveur (traitement BD, caching, algorithmes)

http://monserver.com/fiches
http://monserver.com/fiches
http://monserver.com/fiches/2
http://monserver.com/fiches/2
http://monserver.com/fiches/2
http://monserver.com/fiches/2
http://monserver.com/fiches/2
http://monserver.com/fiches/2

Exemple de serveur REST :

• GET https://api-adresse.data.gouv.fr/search/?q=<MA RECHERCHE>

3 - Requêtes HTTP : les bases

OKHttp : framework Android pour effectuer des requêtes HTTP simplement

3 - Requêtes HTTP : les bases

@

Exercice n°12
• Installer OkHttp https://github.com/square/okhttp
•Dans le onResume() de la MainActivity, lancer une requête GET vers

https://api-adresse.data.gouv.fr/search/?q=Place%20du%20commerce

• L’application Crashe… Chercher l’erreur sur internet

4 - Asynchronicité et parallélisme

4 - Asynchronicité et parallélisme

L’accès au Thread UI Android est bien gardé !
• Une seule personne à la fois (système de lock : sémaphore)
• Tous les autres Threads qui en ont besoin sont en attente

4 - Asynchronicité et parallélisme

Conséquence : le Thread UI, c’est pour l’UI !
• Réseau interdit (NetworkOnMainThreadException)
• Éviter à tout prix les calculs non-liés à l’UI (requêtes SQL…)

4 - Asynchronicité et parallélisme

Conséquence :
• On va devoir effectuer certains traitements hors Thread UI
• Et donc créer des nouveaux threads
• Comment faire ça proprement (nettoyage notamment) ?

Les AsyncTasks : Here, There, And Back Again !

4 - Asynchronicité et parallélisme

4 - Asynchronicité et parallélisme

Pour résumer : si vous souhaitez faire une application performante

• Tout ce qui peut être fait en background doit être fait en background
• Les AsyncTasks permettent de facilement exécuter du code en background
• Ne pas oublier l’utilisateur : Loaders et feedback en attendant

4 - Asynchronicité et parallélisme

Exercice n°12 (le vrai cette fois)

• Dans un AsyncTask, lancez une requête GET sur
https://api-adresse.data.gouv.fr/search/?q=Place%20du%20commerce

• Afficher le résultat dans le log Android avec la méthode Log.d()

• Extraire la logique dans une classe dédiée (PlaceSearchService)

• Parser le body du résultat en JSON (avec l’api JSONObject)

• Loguer l’attribut « label » de chaque lieu trouvé

4 - Asynchronicité et parallélisme

4 - Asynchronicité et parallélisme

Ca fonctionne mais…

• Comment prévenir notre activité qu’on a le résultat de la requête ?

5 - Évènements

5 - Évènements

Quel Design Pattern permet d’avoir des objets qui écoutent d’autres objets ?

Design Pattern Observable

5 - Évènements

Listens

Listens

Notifies

Notifies

Design Pattern Observable

- Hux connait Storm2
- Hux connait Storm1
- Storm2 connait Hux
- Storm1 connait Hux

5 - Évènements

Design Pattern Observable

Listens

Notifies

C’est nul

Notifies

Listens

5 - Évènements

Design Pattern Observable : pourquoi c’est nul ?

• Les listeners connaissent l’Observable
• L’Obversable connait tous ses listeners

Dans notre contexte asynchrone
• Le listener = L’activité
• Au moment où on veut notifier l’Activité

• elles est peut être déjà morte
• donc problème Thread UI

• Pose également des problèmes mémoire (Garbage Collector)

5 - Évènements

Design Pattern EventBus

Subscribed to Event « Fire ! »

Subscribed to Event « Fire ! »

Yells «Fire !»EVENT
BUS

5 - Évènements

Design Pattern EventBus

• Les listeners écoutent un évènement (et plus un objet)
• L’émetteur crie un évènement sans avoir à savoir qui écoute
• Tous les listeners intéressés sont notifiés

Dans notre contexte asynchrone
• Plus de couplage fort entre les objets
• Plus de problème de cycle de vie

5 - Évènements

EventBus sur Android : Otto

• Créer des évènements sous forme de classe
• donc potentiellement envoyer des données

• Envoyer des évènements

• Recevoir des évènements (annotations)

• S’inscrire / Se désinscrire du bus

Etape 1 : créer notre Bus d’évènement

Etape 2 : créer un évènement

5 - Évènements

Etape 3 : Poster cet évènement

5 - Évènements

Etape 2 : créer un évènement

4 - Listes et adapteurs5 - Évènements

Etape 4 : Inscrire/Désinscrire l’activité

• Une idée du bon endroit pour s’inscrire ?
• Sur le onResume()

• Une idée du bon endroit pour se désinscrire ?
• Sur le onPause()

4 - Listes et adapteurs5 - Évènements

Etape 5 : écouter et réagir à des évènements

• @Subscribe devant n’importe quelle méthode
• Le paramètre doit être un évènement
• La méthode sera appelée à chaque fois que quelqu’un poste cet évènement

Exercice n°13

• Installer le framework Otto http://square.github.io/otto/

• Créer votre BUS partagé

• Modifier le PlaceSearchService pour :
• Poster un « SearchResultEvent »
• Cet évènement doit stocker une liste de Places

• Modifier la Main Activity pour
• Se mettre à écouter l’EventBus au bon moment
• Arrêter d’écouter l’EventBus au bon moment
• Être prévenu de l’envoi de « SearchResultEvent »
• À la réception d’un SearchResultEvent :

• Mettre à jour l’adapter de la liste
• Méthodes de l’adapter : clear() et addAll()

4 - Listes et adapteurs5 - Évènements

http://square.github.io/otto/

Ca fonctionne mais…

• OkHTTP c’est pratique mais encore beaucoup de chose à gérer à la main

• Traitement de tous les cas d’erreurs (errorCode, body null, réponse au mauvais format…)

• Parser le JSON à la main c’est pénible, error-prone, peu maintenable

• Écrire des AsyncTask pour chaque requête va être fastidieux

5 - Évènements

THAT’S ALL FOLKS !

D’ICI LÀ
• Entrainez-vous
• Harcelez-moi (lagardealex@gmail.com

et https://discord.gg/4K9gWTt)

NEXT TIME
• Retrofit
• Google Maps
• Bases de données

mailto:lagardealex@gmail.com
https://discord.gg/4K9gWTt

