
DÉVELOPPEMENT
D’APPLICATIONS MOBILES

Alex Morel - Code Lutin

@alex_morel_

DISCLAIMER

Le but du module n’est pas :

• d’apprendre les frameworks les plus récents (Kotlin/AAC)

• de vous affirmer « Expert Android » sur LinkedIn

Le but du module c’est :

• comprendre les problématiques propres au dev mobile

• maitriser les concepts permettant de les résoudre et des

frameworks simples (en native et en hybride)

• pouvoir postuler à un poste de développeur Android Junior
• répondre à vos questions (techniques ou sur le monde du

travail)

Arrêtez-moi quand
vous voulez !

Programme du module :

Tout est sur madoc (j’y mets mes slides)
Le cours c’est aussi approfondir chez vous :
• par mail : lagardealex@gmail.com
• sur discoord : https://discord.gg/4K9gWTt

mailto:lagardealex@gmail.com
https://discord.gg/4K9gWTt

Programme du cours Android natif :

1. Bases Android
2. HTTP, Asynchronicité, Évènements, Google Maps
3. Base de données, Notifications
4. Bonnes pratiques, débugage, architecture

Je peux inclure les sujets de votre choix (prévenez-moi tôt)

Programme du jour :

1. Structure d’un projet Android (Rappels)
2. Build d’un projet Android (Gradle)
3. Git - niveau 1 (Local work)
4. Listes & Adapteurs
5. Gestion des resources (Assets & Drawables)

1 - Structure d’un projet Android

1 - Structure d’un projet Android

1 - Structure d’un projet Android

1 - Structure d’un projet Android

1 - Structure d’un projet Android

• Liste les permissions nécessaires à l’application

• Déclare l’application (icône, nom…)

• Liste les activités

• Liste les services

Le Manifest Android : le contrat de votre App (et une source infinie de bugs)

Pari n°1 : quelqu’un va oublier de déclarer une activité ou une permission dans le Manifeste

• Assets (sons, vidéos, pdf…)

• Drawables (multi-résolution)

• Layouts (vues XML)

• Values : constantes (couleurs, strings…)

• Supporte le multilingue (même le danois)

Les Ressources : tout ce que votre app embarque au download

Tip : faire très attention à ce que vous embarquez, le poids explose très vite

1 - Structure d’un projet Android

Lien entre :
• Vue (setContentView)
• Interactions utilisateurs (clics, scrolls…)
• Logique applicative

Les Activités : les contrôleurs de votre Application

1 - Structure d’un projet Android

Cycle de vie d’une Activité

• A connaitre pour brancher les
comportements aux bons moments

• Impossible de toucher à l’UI si
l’application n’est pas dans l’état
« running » (asynchrone)

• Surcharger proprement (appeler la
super méthode systématiquement)

Pari n°2 : quelqu’un va oublier d’appeler la super-méthode

1 - Structure d’un projet Android

Les vues : fichiers XML (proche HTML) Android Studio shortcut : control + clic

1 - Structure d’un projet Android

Les vues : des widgets natives

• Possibilité d’installer d’autres vues
(carousel, signature…)

• Possibilité de définir ses propres vues

1 - Structure d’un projet Android

Les vues : responsive

iOS : peu de résolutions différentes

Android : infinité de possibilité

1 - Structure d’un projet Android

Les vues : responsive

2 Grandes Familles de Layout

• Layout structurés :
• LinearLayout (horizontal/vertical, chaque enfant déclare son poids)
• GridLayout (grille)
• TableLayout (tableaux)

• Layouts relatifs :
• RelativeLayout (éléments placés relativement à leur parent/slibings)
• ConstraintLayout (s’approche d’iOS) : à privilégier vs Relative Layout

1 - Structure d’un projet Android

Exercice n°1

• Lancer le projet d’exemple sur vos téléphones
• Ajouter une RatingBar à votre ConstraintLayout
• La RatingBar doit être située en bas et centrée horizontalement peu importe la résolution
• Récupérer la ratingBar dans votre activité avec findViewById()
• Incrémenter la valeur de la ratingBar à chaque fois que l’activité passe en premier plan

Android Studio shortcuts
• Controle + espace
• Alt + Entrée

https://developer.android.com/training/constraint-layout/index.html

1 - Structure d’un projet Android

Passer votre téléphone en developer mode
• Paramètres > Etat du téléphone (ou A propos de l’appareil)
• Cliquer 5 fois sur le numero de build
• Puis dans le développeur mode : autoriser le debuggage USB

1 - Structure d’un projet Android

Exercice n°2

• Ajouter un OnClickListener sur la TextView HelloWorld pour décrémenter la RatingBar à
chaque clic

Android Studio shortcuts
• Shift Shift Shift

1 - Structure d’un projet Android

2 - Build Android (gradle)

• Déclarer les URL des repos sources

• Déclarer les dépendances du projet

• Déclarer les contraintes de build
• version Android
• version de l’app
• …

• Définir des règles custom (release…)

• Gradle fait le reste et génère l’APK/
AAB

2 - Build Android (gradle)

2 (ou plus) build.gradle (Shift Shift Shift !)

• Le build.gradle «projet » (top-level : sources, configuration générale)
• Un build.gradle pour chaque module (app : dépendances, contraintes)
• En plus du module app, possiblement plusieurs autres (librairies)

2 - Build Android (gradle)

Exercice n°3
•Installer le framework ButterKnife sur notre projet

https://github.com/JakeWharton/butterknife

2 - Build Android (gradle)

Apparté : ButterKnife

• findViewById() et setOnClickListener() sont verbeuses, sauvages (Cast) et pénibles

• ButterKnife est un « sucre syntaxique » basé sur des annotations

• Exécute toutes les annotations à l’appel de ButterKnife.bind()

Pari n°3 : quelqu’un va oublier d’appeler ButterKnife.bind()

Exercice n°4

• Refactorer la MainActivity pour utiliser ButterKnife (plus de findViewById ni
OnClickListener)

https://github.com/JakeWharton/butterknife

Apparté : ButterKnife

3 - Git - niveau 1

3 - Git - niveau 1

NE TRAVAILLEZ JAMAIS SANS REPO GIT

COMMITEZ PETIT POUR LES CONFLITS

COMMITEZTOUT LE TEMPS

3 - Git - niveau 1

• Repository Git
• VCS distribué (pas comme SVN)
• dossier .git à la racine
• et c’est tout (pas comme SVN)

• Un arbre de commits
• Un message
• Un parent
• Un patch (ensemble de modifications)
• Une somme de contrôle SHA-1 (calculée)

• Passage de branche en branche rapide

3 - Git - niveau 1

Travailler en local : working, staging, repo

3 - Git - niveau 1

3 - Git - niveau 1

3 - Git - niveau 1

3 - Git - niveau 1

LES 3 CHOSES À GARDER EN TÊTE

1. Je fais mes modifs

2. Je git add ce que je veux embarquer dans le commit

3. Je comitte

3 - Git - niveau 1

Exercice n°5

• Vous placer dans le dossier du projet Android

• Supprimer le fichier .gitignore s’il a été créé automatiquement

• Initialiser un repository git avec la commande git init

• Ajouter tout le contenu du dossier (expression régulière .)

• Etudier la liste des fichiers prêts à être comités, comprenez-vous le problème ?

3 - Git - niveau 1

3 - Git - niveau 1

3 - Git - niveau 1

Exercice n°5 (le vrai cette fois)

• Ajouter tout le contenu du dossier (expression régulière .)

• Etudier la liste des fichiers prêts à être commités, est-ce acceptable ?

• Commiter

• Ajouter un commentaire, ajouter, vérifier la diff, commiter

• Ajouter un commentaire, ajouter, modifier le commentaire, vérifier la diff

LES 3 CHOSES À GARDER EN TÊTE

1. Je fais mes modifs, j’add, je commite

2. Je pense à toujours commencer par initialiser mon gitignore

3. Je vérifie toujours le contenu de mes commits (auto-revue)

git init, add, status, commit, reset

4 - Listes et adapteurs

4 - Listes et adapteurs

View dans le layout (xml)

Chaque éléments de la liste va être rendu sous forme d’Item

Par rapport aux ListView, GridView…
- Force à implémenter les bonnes pratiques (e.g. Pattern ViewHolder)
- Plus facile à animer
- Bien plus customizables (organisation des items entre eux notamment)

RecyclerView : permet d’afficher une liste d’objets Java sous forme graphique

View dans le layout (xml)

Associée à un LayoutManager (pour positionner les items)

Associée à un Adapter (pour lier chaque élément de la liste à un item)

Associée à un ItemAnimator (e.g. animations d’ajouts/suppressions)

4 - Listes et adapteurs

Associée à un Adapter (pour lier chaque élément de la liste à un item)

Méthode « naïve » : je créé un Item par élément visible de ma liste

Rôle de l’adapter: afficher les élément de la liste sous forme d’Item

- Pour une liste de 10k éléments

- 10 éléments visibles au départ -> 10 items créés (OK)

- Je scrolle jusqu’en bas, on a créé 10k items (KO)

4 - Listes et adapteurs

Associée à un Adapter (pour lier chaque élément de la liste à un item)

Quand je scroll dans ma liste, au lieu de créer de nouveaux items

Je réutilise les items existants, je change juste les valeurs (des images, des
textViews…)

Rôle de l’adapter: afficher les élément de la liste sous forme d’Item

Méthode « finaude » : le pattern ViewHolder

4 - Listes et adapteurs

4 - Listes et adapteurs

https://youtu.be/uh6lKnfp5hY

https://youtu.be/uh6lKnfp5hY

Associée à un Adapter (pour lier chaque élément de la liste à un item)

Méthode « finaude » : le pattern ViewHolder

Un ViewHolder doit stocker tous les champs qui peuvent « bouger » d’un item à l’autre

4 - Listes et adapteurs

Associée à un Adapter (pour lier chaque élément de la liste à un item)

Méthode « finaude » : le pattern ViewHolder

4 - Listes et adapteurs

View dans le layout (xml)

Associée à un LayoutManager (pour positionner les items)

Associée à un Adapter (pour lier chaque élément de la liste à un item)

Associée à un ItemAnimator (e.g. animations d’ajouts/suppressions)

4 - Listes et adapteurs

Associée à un LayoutManager (pour positionner les items)

4 - Listes et adapteurs

Associée à un LayoutManager (pour positionner les items)

4 - Listes et adapteurs

Associée à un LayoutManager (pour positionner les items)

4 - Listes et adapteurs

Associée à un LayoutManager (pour positionner les items)

4 - Listes et adapteurs

Etape 1 : créer le modèle

Android Studio shortcuts
• Alt + Insérer (Generate)

Etape 2 : créer le layout de notre Item

4 - Listes et adapteurs

Etape 3.1 : créer le ViewHolder dans l’adapteur

4 - Listes et adapteurs

Etape 3.2 : créer l’adapter

4 - Listes et adapteurs

Etape 4 : brancher RecyclerView et Adapter dans l’activité

4 - Listes et adapteurs

Exercice n°7

• Avec le modèle suivant

• Créer une Liste d’Adresses et l’afficher

4 - Listes et adapteurs

5 - Gestion des ressources (assets, drawables)

5 - Gestion des ressources (assets, drawables)

Support multi-résolution possible
• Meilleures performances
• Optimisation mémoire

Drawables : tout ce qui peut se dessiner (images ou formes géométriques)

Super Utile !!!!!

https://www.javahelps.com/2015/02/android-drawable-importer.html

5 - Gestion des ressources (assets, drawables)

https://www.javahelps.com/2015/02/android-drawable-importer.html

Drawables : tout ce qui peut se dessiner (images ou formes géométriques)

5 - Gestion des ressources (assets, drawables)

Assets & raw : le reste (sons, vidéos, PDF…)

5 - Gestion des ressources (assets, drawables)

Exercice n°8

• Ajouter un drawable pour les maisons et un drawable pour les rues

• Modifier le layout des items pour afficher une image à gauche de l’adresse

• Modifier le code pour afficher une image différente si l’adresse contient « 1 »

• Jouer un son quand on clique sur une image de la liste

Pari n°4 : quelqu’un va s’amuser avec les sons

5 - Gestion des ressources (assets, drawables)

THAT’S ALL FOLKS !

NEXT TIME
• Intents
• HTTP
• Asynchronicité
• Evènements

D’ICI LÀ
• Entrainez-vous (RecyclerViews)
• Harcelez-moi (lagardealex@gmail.com)
• https://discord.gg/4K9gWTt

mailto:lagardealex@gmail.com
https://discord.gg/4K9gWTt

